All BGRI Abstracts

Displaying 41 - 50 of 197 records | 5 of 20 pages

New germplasm development using synthetic and other approaches to transfer stem rust resistance from tetraploids to hexaploids

BGRI 2014 Plenary Abstract
Steven Xu USDA-ARS, Cereal Crops Research Unit, Fargo, ND, USA

In the Triticum genus, tetraploid T. turgidum is a useful resource for germplasm improvement of hexaploid common wheat (T. aestivum). Several recent studies demonstrated that Pgt race TTKSK resistant genotypes were abundantly present among seven tetraploid subspecies (T. turgidum subsp. carthlicum , dicoccum , dicoccoides , durum, polonicum , turgidum , and turanicum ). In an effort to improve common wheat for TTKSK resistance, we have been transferring stem rust resistance from tetraploid to hexaploid wheat through production of synthetic hexaploid wheat (SHW) or direct hexaploid × tetraploid hybridization followed by backcrossing. For production of SHW lines, we selected 181 unique tetraploid genotypes from the seven tetraploid subspecies for crosses with 14 accessions of Aegilops tauschii (2 n = 2 x = 14, DD) and developed 200 new SHW lines from these crosses. We are currently characterizing these lines for reaction to stem rust. So far, 80 SHW lines and their parents have been evaluated for reaction to races TTKSK, TRTTF, TTTTF and six other U.S. races and genotyped using molecular markers linked to known resistance genes previously identified in T. turgidum subsp. dicoccum and Ae. tauschii. The evaluation data showed that 42, 40, and 52 SHW were resistant to races TTKSK, TRTTF, and TTTTF respectively, with 21 lines being resistant to all three races. Based on marker analysis and race specificity, we postulated that a number of SHW lines have novel genes conferring resistance to TTKSK and other races. For gene introgression through direct hybridization, we have transferred Sr47, which was recently transferred from Ae. speltoides into durum through marker-assisted chromosome engineering, from durum into adapted hard red spring wheat germplasm. The new SHW lines and adapted germplasm carrying unique stem rust resistance genes from the tetraploids represent new sources of stem rust resistance for hexaploid wheat improvement.


Understanding resistance gene mediated recognition of stem rust in wheat

BGRI 2014 Plenary Abstract
Peter Dodds CSIRO Plant Industry, Australia

Stem rust caused by Puccinia graminis tritici (Pgt) is one of the most serious diseases in wheat and is combated mainly through the use of resistant varieties. Because the fungus evolves virulence towards previously resistant varieties, continuous breeding and identification of new sources of resistance are necessary to combat the threat of rust epidemics. Our work on the flax rust model system has provided insights into how the plant immune system recognises and responds to rust pathogens. We have been extending this work to wheat stem rust by targeted cloning of resistance (R) genes in wheat and corresponding Avr genes in Pgt. Plant R genes encode immune receptors that recognise and respond to pathogen effector proteins delivered into host cells from haustoria. We recently isolated the Sr33 and Sr50 resistance genes from wheat and have begun functional analyses to determine how they trigger defense responses. We are also targeting effectors from Pgt that are recognised by wheat R genes. We used genome and transcriptome sequencing to predict ~400 candidate effector genes from Australian Pgt race 21- 0. To screen for recognition of these proteins by wheat R genes, we developed a bacterial Type III Secretion System delivery assay using Pseudomonas fluorescens to inject the effector candidates into wheat leaf cells. We are screening candidate effectors on a set of 18 wheat cultivars carrying 22 different R genes and have so far identified one effector that induces a cell death response specifically on a wheat genotype carrying Sr22. Understanding the nature of wheat R genes and the Avr proteins that they recognize will allow better prediction of R gene durability and enable the possibility of rational design of novel R genes. We are also developing techniques for stacking R genes in cassettes for deployment of multiple genes at a single locus in wheat. 


Denmark's investment in the Global Rust Reference Center (GRRC)

BGRI 2014 Plenary Abstract
Mogens Hovmoller Aarhus University, Denmark

The Global Rust Reference Centre (GRRC, was established in 2008 upon the request of CIMMYT and (ICARDA) and extended in 2011 by the support of the Borlaug Global Rust Initiative. GRRC serve as a global hub for investigating wheat rust fungi and can receive alive samples from all countries year round. The activities of GRRC comprise pathotyping of wheat yellow rust and wheat stem rust, as well as training of students and scientists, data handling and storage (databases) and reporting. The current research activities have a focus on evolutionary population biology, as well as basic genetic and genomic studies in yellow rust. The “Wheat Rust Toolbox” and the team behind has become part of the GRRC and all data generated by GRRC will be stored in this system. Data management, research activities and dissemination will be coordinated and integrated with partner information platforms at CIMMYT, ICARDA, Cornell University and other global partners. The quarantine greenhouse space has in recent years been enlarged by more than 50% allowing GRRC to take in more rust samples and students. The GRRC activities expanded significantly in 2011 and 2013 via grants from the Danish Strategic Research Council and the Ministry of Food, Agriculture and Fisheries. One of these initiatives, RUSTFIGHT, has a focus on understanding “aggressiveness” and involves a number of Danish and international partners, including ICARDA and CIMMYT, INRA and the John Innes Centre (UK), and private Danish plant breeding Industry.


A comparison of stem rust in oats and stripe rust in wheat: A Swedish example

BGRI 2014 Plenary Abstract
Jonathan Yuen Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences

A number of rusts affect grain crops in Sweden, but stem rust on oats and stripe (yellow) rust on wheat appear to create the greatest problems in production. The epidemiology of these diseases is intimately connected to the overall cropping patterns of these two crops. In Sweden, oats are only sown in the spring, thus forcing any overwintering pathogen to survive a Swedish winter. This is easiest for Puccinia graminis f. sp. avenae, which apparently completes its full, sexual life cycle on the abundant barberry plants. The presence of barberry and clear indications of sexual reproduction by P. graminis suggests that Pgt could be a problem on wheat, but there are only sporadic reports of stem rust on wheat. Wheat cultivars grown in Sweden possess few effective genes for resistance to stem rust, and the lack of rust is probably due to a lack of Pgt in the region. Given the resurgence of barberry in the landscape this implies that stem rust on wheat could be a major problem if (or when) the pathogen returns. P. striiformis, in contrast, can survive the Swedish winters on fall sown cereal crops, and thus it is the fittest clones that survive and dominate in the population. A large number of factors can affect this fitness, most markedly resistance genes in the cultivated wheat, but it is also possible that extended asexual reproduction can reduce the fitness of these persistent clones (Muller's ratchet) so that they can be displaced by fitter clones. Despite the widespread occurrence of barberry plants, we have not found any aecia of P. striiformis, although there does seem to be some genetic variation in the alternate host. Simple models that simulate the appearance and competition between different clonal lineages of the pathogen indicate that fitter individuals will eventually dominate the population, but their initial appearance will be difficult, since they are only detectable after enough generations have passed to increase the population size above a detectable level.


Surveying stem rust and barberry in South America

BGRI 2014 Poster Abstract
Tom Fetch AAFC, Canada

The discovery of Ug99 stem rust with virulence on most widely grown wheat cultivars worldwide triggered substantial new research on host resistance genes and associated virulence dynamics in the pathogen. Ug99 is mutating and migrating, with eight variants presently known, and has spread throughout eastern Africa, across the Red Sea to Yemen and Iran, and to South Africa. It has been speculated that further movement of Ug99 spores from South Africa to South America could happen on prevailing winds that occur about eight days per month on average. While Ug99 is not yet present in South America, this is a critical entry point into the Western Hemisphere as demonstrated by introduction of soybean rust to Paraguay in 2001. Thus, work was initiated to engage countries in South America to participate in monitoring for its occurrence. Stem rust surveys are currently conducted in Argentina, Brazil, and Uruguay on a regular basis. Each country has a national agricultural institute with adequate to good capacity to perform pathotyping work, but have limitations due to inadequate greenhouse cooling. We will present the current virulence dynamics of Pgt in each country. In addition to surveys for rust, we searched for the presence of Berberis spp. in Brazil.  Berberis laurina was abundantly distributed in the Rio Grande du Sul state near the city of Caçapava. Leaves sampled in October displayed low to moderate aecial infections. Determination of the pathogen species infecting B. laurina is currently being determined by physiologic and molecular methods. 


Waste not, want not: The importance of being earnest about gene stewardship

BGRI 2013 Plenary Abstract
Robert Bowden USDA-ARS, Hard Winter Wheat Genetics Research Unit
Watch presentation (YouTube)

The shortage of stem rust resistance genes effective against the Ug99 group prompted recent efforts to increase the number of resistance genes available to breeders. We are fortunate that many new and/or cytogenetically improved rust resistance genes are now being shared with the global wheat breeding community by their developers. If we are poor stewards of these resources, the new resistance genes will eventually be defeated, and we will waste the efforts and investments that have been made. However, if we are good stewards, we should have enough resistance to achieve sustainable, durable resistance. Stewardship can be defined as the careful and responsible management of something entrusted to one’s care. What should we do to safeguard the new resistance genes? Diversification of resistance is often suggested as a way to reduce the risk of large scale epidemics. Although diversification is generally a good idea, it cannot be at the expense of leaving new genes exposed and vulnerable. A durable combination (pyramid) must be designed so that the component genes protect each other. They should reduce the probability of simultaneous pathogen mutations to virulence and they should avoid stepwise erosion of the pyramid by preventing significant reproduction of any new race that is virulent on component genes. We need pyramids to be immune or nearly immune not only to current races, but to anticipated mutants. This objective should be achievable with three or more major genes or a combination of major and minor genes. Successful gene stewardship will depend on several things. On the technical side, we will need very good markers for each gene. Each breeding program will require strong genotyping support to assemble and then validate pyramids. Most importantly, successful stewardship will require that we organize our user community to cooperate more closely. We will need to decide which genes require special stewardship and which do not. Every user of the stewardship pool resource will need to participate in earnest. It only takes one cultivar with an unprotected gene to give the pathogen a stepping stone to greater virulence. As they say, a chain is only as strong as the weakest link


Survey of barberry and associated rust pathogens in Nepal

BGRI 2013 Poster Abstract
Maria Newcomb USDA-ARS Arid Land Agricultural Research Center

Wheat contributes directly to food security and the national economy in Nepal. Of the rusts of wheat, stripe rust causes the most frequent and severe yield losses. Race changes can lead to damaging epidemics. To better understand factors that influence regional diversity of the stripe rust and stem rust pathogens, we surveyed rusts on barberry in 2012 and 2013. Nepal has a high diversity of barberry (30 species) and elevational habitats that extend the seasonal distributions of wheat and barberry. The greatest diversity occurs from 2,700 m and above, and distributions range from 1,200 to 4,500 m. We surveyed locations in all regions (central, eastern, western, and far-western) of the hill zone. Barberry was common between 1,300 and 1,800 m where wheat is grown. In the far-western region, barberry was found near all the wheat fields we surveyed. Between 1,300 and 1,800 m, Berberis asiatica is the most common species. B. aristata is present at the upper end of this range. Aecial infections on barberry occurred in patchy distributions in both 2012 and 2013. Collections of aecia on barberry were made at 5 locations and are being identified by inoculation studies using a range of grass hosts. Additionally, the rust samples are being evaluated by real-time PCR assays using species-specific ITS primer/probes for detection of Puccinia graminis or P. striiformis. Preliminary results for 32 single-aecia samples from 2012 were negative for P. graminis; 7 were positive for the P. striiformis complex. 


How has Lr34/Yr18 conferred effective rust resistance in wheat for so long?

BGRI 2012 Plenary Abstract
Beat Keller Institute of Plant Biology, University of Zurich, Switzerland
View keller_2012.pdf (270.05 KB)

The Lr34/Yr18 gene has been used in agriculture for more than 100 years. In contrast to many other resistance sources against leaf rust and stripe rust, it has remained effective and no virulence has been reported. This makes Lr34 a unique and highly valuable resource for rust resistance breeding. The pleiotropic nature of the gene conferring partial resistance to different pathogen species, the associated leaf tip necrosis and its durability suggest a molecular mechanism that is different from major gene resistance. This is supported by the molecular nature of Lr34 which was recently found to encode an ABC transporter. Interestingly, all tested wheat lines contain an allele of the Lr34 gene on chromosome 7DS. In its susceptible form, the gene does not confer resistance. The difference between the encoded resistant and susceptible LR34 isoforms consists of only two amino acid changes, whereas the rest of the proteins are identical. These two changes must change the biochemical properties of the resistant LR34 transporter in such a way that the plant becomes resistant. We speculate that there is a slight conformational change in the resistant form of the protein, resulting either in modified specificity or kinetics of the transported molecule, or that the binding properties to an unknown second protein interacting with LR34 are changed, resulting in altered function. While the molecular nature of the molecule(s) transported by the LR34 protein remains unclear, it is likely that a physiological change related to Lr34 activity is at the basis of resistance. We are currently establishing transgenic approaches in heterologous grass species to further investigate the molecular activity of Lr34 and to better understand a physiological mechanisms resulting in disease resistance.


Stocking the Breeder’s Toolbox: An update on the status of resistance to stem rust in wheat

BGRI 2012 Plenary Abstract
Mike Pumphrey Department of Crop and Soil Sciences, Washington State University, USA
View pumphrey_2012.pdf (172.42 KB)

The number of designated stem rust resistance genes has increased by ~10 over the past four years. Translocations involving several broadly-effective alien resistance genes with limited or no previous agricultural deployment were enginneered to reduce the likelihood of linkage drag, and the foundations of adult plant resistance were established. This progress resulted from international collaboration, increased global coordination, and critical financial support. By buidling on these initial accomplishments and improving genetic and genomic resources over the next four years we expect to achieve: 1. more than 10 additional formally designated stem rust resistance genes conferring resistance to Ug99-complex races, 2. robust/diagnostic DNA marker haplotypes identified for most sources of resistance, 3. multiple linkage blocks of two or more resistance genes to enhance gene pyramiding efforts, and 4. knowledge of numerous additional sources of resistance complelely or partially identified. Never before have so many resources and supporting tools been available to combat the wheat rusts. It is an opportune time for the international community to strategically deploy and responsibly steward our genetic resources for durable control of wheat stem rust.


The growing threat of stripe rust worldwide

BGRI 2012 Plenary Abstract
Mahmoud Solh ICARDA
View solh_2012.pdf (196.38 KB)

Stripe rust of wheat (yellow rust) is a recurring production constraint in the majority of wheat growing areas of the world. The transboundary nature of the pathogen coupled with its current virulence capabilities, favorable environmental conditions, sometimes overlapping and/or continuous cultivation of susceptible varieties in stripe rust-prone zones, and genetic uniformity of certain recent ‘mega-cultivars’ were major driving forces in stripe rust epidemics worldwide. Breeding for resistance must continue be the central pillar of stripe rust control, and for this to be effective there must be adequate pathogen monitoring combined with commitment to identify and incorporate diverse sources of resistance, preferably of the durable type. Deployment of resistance will only be successful if it is combined with high yield and appropriate end-use quality to meet the needs of farmers and consumers. Suitable seed systems need to be in place for timely distribution of varieties. This paper deals with the historical impacts and current status of stripe rust epidemics and highlights the need for regional and global collaboration in mitigating the global impact of this disease.