All BGRI Abstracts

Displaying 61 - 70 of 197 records | 7 of 20 pages

Unraveling the entry mechanism of oomycete and fungal effector proteins into host cells

BGRI 2011 Plenary Abstract
Shiv D. Kale Virginia Bioinformatics Institute, Virginia Tech University, USA
View kale_2011.pdf (224.58 KB)

Oomycetes and fungi facilitate pathogenesis via secretion of effector proteins that have apoplastic and intracellular localizations. These effector proteins have a diverse array of functions that aid in pathogenesis, including modification of defense responses. In the oomycetes, well characterized effector proteins that can translocate into the host cells share a pair of conserved N-terminal motifs known as RXLR and dEER. The RXLR motif has been shown to mediate translocation of the oomycete avirulence proteins Avr1b and Avr3a into host cells. Detailed mutagenesis of the RXLR motif of Avr1b revealed that the motif is tolerant to several amino acid substitutions while retaining functional translocation activity, resulting in the definition of a broadened RXLR-like motif, [R,K,H] X[L/M/I/F/Y/W]X. This motif has been used to identify functional translocation motifs in several fungal effector proteins, AvrL567, Avr2, and AvrLm6. Effectors with both RXLR and RXLR-like motifs bind phosphatidylinositol- 3-phosphate (PI-3-P) to mediate translocation via lipid raft mediated endocytosis. Mutations in RXLR or RXLRlike motifs result in loss of phospholipid binding and translocation by effectors. Effector entry into plant cells can be blocked by proteins and inositides that disrupt binding to PI-3-P, suggesting effector-blocking technologies that could be used in agriculturally important plant species.

Tags:

Investigating rust resistance with the model grass Brachypodium

BGRI 2011 Plenary Abstract
David Garvin USDA-ARS Plant Science Research Unit and Department of Agronomy and Plant Genetics, University of Minnesota, USA
View garvin_2011.pdf (116.24 KB)

The model plant Arabidopsis thaliana has provided unique opportunities to explore and unravel many key biological features of plant biology including disease resistance. However, the inability of rust fungi of the genus Puccinia to infect Arabidopsis has prevented its use in exploring grass-rust interactions. The model plant Brachypodium distachyon is a member of the same grass subfamily as the principal cool-season grain crops, and can be infected with various Puccinia species. We have focused our efforts on establishing Brachypodium as a model for exploring grass - Puccinia graminis interactions. Brachypodium can be successfully infected by different formae speciales of the stem rust pathogen, including P. graminis f. sp. tritici. A wide range of response to stem rust occurs in Brachypodium and efforts are underway to decipher the genetic basis for this variation using recombinant inbred populations from parents with differing levels of response. Similarly, induced mutants with compromised stem rust resistance have been identified and are now being employed within a program to understand the molecular biology of stem rust resistance and susceptibility. Our results to date suggest that Brachypodium holds promise as a model plant for advancing our understanding of stem rust resistance.

Tags:

New tools for wheat genetics and breeding: Genome-wide analysis of SNP variation

BGRI 2011 Plenary Abstract
Eduard Akhunov Department of Plant Pathology, Kansas State University, USA
View akhunov_2011.pdf (124.21 KB)

Single nucleotide polymorphism (SNP) is one of the most broadly distributed types of molecular variation in a genome which, along with the availability of costand labor-effective genotyping platforms, make it the marker of choice for many crops. Our work is aimed at the development of a dense set of genetically mapped SNP markers for low-cost high-throughput genotyping of wheat germplasm. Next generation sequencing of normalized cDNA libraries was used for developing gene-associated SNPs in polyploid wheat. A total of 7.5 million 454 reads were generated from cDNA libraries of 10 wheat cultivars from US and Australia and processed for discovering SNPs using a bioinformatical pipeline specifically designed for variant discovery in polyploid transcriptomes. A total of 25,000 high-quality SNPs distributed among 14,500 EST contigs were identified. All these SNPs were validated by comparison with RNAseq data generated from an additional set of 17 U.S. and Australian cultivars. A total of 9,000 genome-wide common SNPs were selected for designing an Illumina iSelect assay. Preliminary testing showed that more than 95% of SNPs produce high-quality genotype calls with up to 70% being polymorphic in a diverse sample of U.S. and Australian cultivars with a minor allele frequency >0.05. The assay is currently being used for studying patterns of genetic diversity in a worldwide collection of wheat cultivars and for developing a high-density SNP map. A long term goal of this initiative is to advance wheat research and breeding by developing genetic and genomic tools for efficient analysis of agronomic traits using high-resolution linkage and association mapping and deploying SNP markers in breeding programs

Tags:

High yielding CIMMYT spring wheats with resistance to Ug99 and other rusts developed through targeted breeding

BGRI 2011 Plenary Abstract
Ravi Singh CIMMYT
View rsingh_2011.pdf (216.09 KB)

Targeted breeding to develop high yielding wheat germplasm resistant to Ug99 and other rusts initiated at CIMMYT in 2006. Ug99 resistant materials, especially those with adult plant resistance (APR), were used in crossing. F3 and F4 populations from simple, BC1 and top crosses were grown for two generations under high rust pressures at Njoro, Kenya in a Mexico-Kenya shuttle breeding scheme. Parallel populations were also grown in Mexico for comparison. Approximately 5,000 advanced lines were tested for grain yield performance at Ciudad Obregon, Mexico in 2009/10 season, and phenotyped for resistance to Ug99 and other rusts. The 728 retained lines were evaluated for grain yield performance in five environments during the 2010/11 season in Mexico. About 68% of the 728 lines had nearimmune (16.5% entries) to adequate APR to Ug99. An additional 13.6% lines carried one of the six (Sr25, Sr26, SrTmp, SrHuw234, SrSha7, and an unidentified gene) race-specific resistance genes often in combination with APR gene Sr2. About 80% entries were highly resistant to yellow rust in Kenya and Mexico, and 90% entries to leaf rust in Mexico. Yield distribution of lines derived from Mexico-Kenya shuttle breeding was similar to lines selected only in Mexico. Sufficient lines with >5% superior yields than the Mexican checks varieties in 2 years testing were identified. Our results indicate that targeted crossing and shuttle breeding are powerful tools for a simultaneous improvement of grain yield potential and resistance to rusts.

Tags:

Implications of climate change for diseases, crop yields and food security

BGRI 2010 Plenary Abstract
Adrian Newton Scottish Crop Research Institute (SCRI), U.K.
View newton_2010.pdf (531.13 KB)

Accelerated climate change affects components of complex biological interactions differentially, often causing changes that are difficult to predict. Crop yield and quality are affected by climate change directly, and indirectly, through diseases that themselves will change but remain important. These effects are difficult to dissect and model as their mechanistic bases are generally poorly understood. Nevertheless, a combination of integrated modelling from different disciplines and multi-factorial experimentation will advance our understanding and prioritisation of the challenges. Food security brings in additional socio-economic, geographical and political factors. Enhancing resilience to the effects of climate change is important for all these systems and functional diversity is one of the most effective targets for improved sustainability.

Tags:

Rust-proofing wheat for a changing climate

BGRI 2010 Plenary Abstract
Sukumar Chakraborty CSIRO Plant Industry, Australia
View chakaborty_2010.pdf (360.95 KB)

This paper offers projections of potential effects of climate change on rusts of wheat and how we should factor in a changing climate when planning for the future management of these diseases. Even though the rusts of wheat have been extensively studied internationally, there is a paucity of information on the likely effects of a changing climate on the rusts and hence on wheat production. Due to the lack of published empirical research we relied on the few published studies of other plant diseases, our own unpublished work and relevant information from the vast literature on rusts of wheat to prepare this overview. Potential risks from a changing climate were divided into three major groups: increased loss from wheat rusts, new rust races evolving faster and the reduced effectiveness of rust resistances. Increased biomass of wheat crops grown in the presence of elevated CO2 concentrations and higher temperatures will increase the leaf area available for attack by the pathogen. This combined with increased speed of the pathogen’s life cycle, may increase the rate of epidemic development in many environments. Likewise, should the effects of climate change result in more conducive conditions for rust development there will also be a corresponding increase in the rate of evolution of new and presumably virulent races. The effectiveness of some rust resistance genes are influenced by temperature, crop development stage and even nitrogen status of the host. It is likely that direct and indirect changes on the host from climate change may influence the effectiveness of some of these resistance genes. Currently the likely effects of climate change on the effectiveness of disease resistance is not known and since disease resistance breeding is a long term strategy it is important to determine if any of the important genes may become less effective due to climate change. Studies must be made to acquire new information on the rust disease triangle to increase the adaptive capacity of wheat under climate change. BGRI leadership is needed to broker research on rust evolution and the durability of resistance under climate change.

Tags:

Nutrient uptake in rust fungi: How sweet is parasitic life?

BGRI 2010 Plenary Abstract
Ralf T. Voegele Fachgebiet Phytopathologie, Institut für Phytomedizin, Fakultät Agrarwissenschaften, Germany
View voegele_2010.pdf (289.53 KB)

A better understanding of the fundamental principles of host-pathogen interactions should enable us to develop new strategies to control disease and to eliminate or at least manage their causative agents. This is especially true for obligate biotrophic parasites like the rust fungi. One vital aspect in the field of obligate biotrophic host-pathogen interactions is the mobilization, acquisition and metabolism of nutrients by the pathogen. This includes transporters necessary for the uptake of nutrients as well as enzymes necessary for their mobilization and metabolism. In a broader sense effector molecules reprogramming the host or triggering the infected cell into metabolic shifts favorable for the pathogen also play an important role in pathogen alimentation.

Tags:

Role of Berberis spp. as alternate hosts in generating new races of Puccinia graminis and P. striiformis

BGRI 2010 Plenary Abstract
Yue Jin USDA-ARS, Cereal Disease Laboratory
View jin_2010.pdf (189.43 KB)

The common barberry and several other Berberis spp. serve as the alternate hosts to two important rust pathogens of small grains and grasses, Puccinia graminis and P. striiformis. Barberry eradication has been practiced for centuries as a means to control stem rust. Diverse virulence variations have been observed in populations of P. graminis f. sp. tritici that were associated with susceptible barberries in North America. Barberry likely has played a role in generating new races of P. striiformis f. sp. tritici in some regions in the world. Several North American stem rust races, namely races 56, 15B and QCC, initially originated from barberry, were subsequently responsible for generating large-scale epidemics. Thus, sexual cycles on Berberis spp. may generate virulence combinations that could have serious consequences to cereal crop production.

Tags:

Characterization of two new wheat stem rust races within the Ug99 lineage in South Africa

BGRI 2010 Plenary Abstract
Botma Visser Department of Plant Sciences, University of the Free State, South Africa
View visser_2010.pdf (240.73 KB)

Two new races of the wheat (Triticum aestivum L.) stem rust pathogen, representing the fifth and sixth variants described within the Ug99 lineage, were detected in South Africa. Races TTKSP and PTKST (North American notation) were detected in 2007 and 2009, respectively. Except for Sr24 virulence, race TTKSP is phenotypically identical to TTKSF, a commonly detected race of Puccinia graminis f. sp. tritici (Pgt) in South Africa. PTKST is similar to TTKSP except that it produces a lower infection type on the Sr21 differential and has virulence for Sr31. Simple sequence repeat (SSR) analysis confirmed the genetic relationship amongst TTKSF, TTKSP, PTKST and TTKSK (Ug99). TTKSK, PTKST and TTKSF grouped together with 99% similarity, while sharing 88% genetic resemblance with TTKSP. These four races in turn shared only 31% similarity with other South African races. It is proposed that TTKSP arose locally as a single step mutation from race TTKSF, whereas PTKST probably represents an exotic introduction of Pgt to South Africa.

Tags:

International surveillance of wheat rust pathogens - progress and challenges

BGRI 2010 Plenary Abstract
Robert Park The University of Sydney, Plant Breeding Institute, Australia
View park_2010.pdf (263.01 KB)

Surveillance of wheat rust pathogens, including assessments of rust incidence and virulence characterization via either trap plots or race (pathotype) surveys, has provided information fundamental in formulating and adopting appropriate national and international policies, investments and strategies in plant protection, plant breeding, seed systems, and in rust pathogen research. Despite many successes from national and regional co-ordination of rust surveillance, few attempts were made to extend rust surveillance to international or even global levels. The Global Cereal Rust Monitoring System was established to address this deficiency. It is underpinned by an information platform that includes standardized protocols for methods and systems used in surveys, preliminary virulence testing, data, sample transmission and management at the field and national and global levels, and includes two web-based visualization tools. While considerable progress has been made towards a global system for monitoring variability in the wheat stem rust pathogen, and linking this to the threat posed by this pathogen to regional wheat production, some challenges remain, including ongoing commitment to support rust surveillance, and the ability to share and compare surveillance data.

Tags:

Pages